

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Resilience of Pinus pinea L. Trees to Drought in Central Chile Based on Tree Radial Growth Methods

doi: 10.3390/f15101775
handle: 10261/370774 , 10396/32368
The increasing occurrence of dry and hot summers generates chronic water deficits that negatively affect tree radial growth. This phenomenon has been widely studied in natural stands of native species but not in commercial plantations of exotic tree species. In central Chile, where the species is increasingly planted, the dynamics of stone pine (Pinus pinea L.) growth under drought have been little explored. We studied the impact of drought on four stone pine plantations growing in central Chile. We sampled and cross-dated a total of 112 trees from four sites, measured their tree-ring width (RWL) series, and obtained detrended series of ring width indices (RWIs). Then, we calculated three resilience indices during dry years (Rt, resistance; Rc, recovery; and Rs, resilience), and the correlations between the RWI series and seasonal climate variables. We found the lowest growth rate (1.94 mm) in the driest site (Peñuelas). Wet conditions in the previous winter and current spring favored growth. In the wettest site (Pastene), the growth rates were high (4.87 mm) and growth also increased in response to spring thermal amplitude. Overall, fast-growing trees were less resilient than slow-growing trees. Drought reduced stone pine stem growth and affected tree resilience to hydric deficit. At the stand level, growth rates and resistance were driven by winter and spring precipitation. Fast-growing trees were more resistant but showed less capacity to recover after a drought. In general, stone pine showed a high post-drought resilience due to a high recovery after drought events. The fact that we found high resilience in non-native habitats, opens new perspectives for stone pine cropping, revealing that it is possible to explore new areas to establish the species. We conclude that stone pine shows a good acclimation in non-native, seasonally dry environments.
- National Scientific and Technical Research Council Argentina
- National Scientific and Technical Research Council Argentina
- Instituto Pirenaico de Ecología Spain
- Instituto Forestal Chile
- Instituto Forestal Chile
Resilience, hydric deficit, stone pine, 634, Tree radial growth, 551, tree radial growth, recovery, climate change, Recovery, Climate change, Stone pine, Hydric deficit, resilience
Resilience, hydric deficit, stone pine, 634, Tree radial growth, 551, tree radial growth, recovery, climate change, Recovery, Climate change, Stone pine, Hydric deficit, resilience
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 43 download downloads 33 - 43views33downloads
Data source Views Downloads DIGITAL.CSIC 43 33


