
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Feasible Solutions for Low-Carbon Thermal Electricity Generation and Utilization in Oil-Rich Developing Countries: A Literature Review

doi: 10.3390/fire7100344
Transitioning to low-carbon energy systems is crucial for sustainable development, particularly in oil-rich developing countries (ORDCs) that face intertwined economic and environmental challenges. This review uses the PRISMA methodology to systematically assess the current state and prospects of low-carbon thermal electricity generation and utilization technologies in ORDCs. The study emphasizes clean thermal technologies such as biogas, biofuels, biomass, hydrogen, and geothermal energy, focusing on solutions that are technically feasible, economically viable, and efficient in combustion processes. These nations face significant challenges, including heavy reliance on fossil fuels, transmission losses, and financial constraints, making energy diversification urgent. The global shift towards renewable energy and the need to mitigate climate change presents an opportunity to adopt low-carbon solutions that align with Sustainable Development Goals related to energy access, economic growth, and climate action. This review aims to (1) evaluate the current state of low-carbon thermal electricity technologies, (2) analyze the technical and economic challenges related to combustion processes and energy efficiency, and (3) provide recommendations for research and policy initiatives to advance the transition toward sustainable thermal energy systems in ORDCs. The review highlights practical approaches for diversifying energy sources in these nations, focusing on overcoming existing barriers and supporting the implementation of clean thermal technologies.
- University of Jaén Spain
- University of Jaén Spain
- University of Cuenca Ecuador
- University of Cuenca Ecuador
sustainable development, Physics, QC1-999, oil-rich developing countries, electricity, low-carbon, clean thermal generation, energy diversification
sustainable development, Physics, QC1-999, oil-rich developing countries, electricity, low-carbon, clean thermal generation, energy diversification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
