Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Firearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fire
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fire
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Feasible Solutions for Low-Carbon Thermal Electricity Generation and Utilization in Oil-Rich Developing Countries: A Literature Review

Authors: Danny Ochoa-Correa; Paul Arévalo; Edisson Villa-Ávila; Juan L. Espinoza; Francisco Jurado;

Feasible Solutions for Low-Carbon Thermal Electricity Generation and Utilization in Oil-Rich Developing Countries: A Literature Review

Abstract

Transitioning to low-carbon energy systems is crucial for sustainable development, particularly in oil-rich developing countries (ORDCs) that face intertwined economic and environmental challenges. This review uses the PRISMA methodology to systematically assess the current state and prospects of low-carbon thermal electricity generation and utilization technologies in ORDCs. The study emphasizes clean thermal technologies such as biogas, biofuels, biomass, hydrogen, and geothermal energy, focusing on solutions that are technically feasible, economically viable, and efficient in combustion processes. These nations face significant challenges, including heavy reliance on fossil fuels, transmission losses, and financial constraints, making energy diversification urgent. The global shift towards renewable energy and the need to mitigate climate change presents an opportunity to adopt low-carbon solutions that align with Sustainable Development Goals related to energy access, economic growth, and climate action. This review aims to (1) evaluate the current state of low-carbon thermal electricity technologies, (2) analyze the technical and economic challenges related to combustion processes and energy efficiency, and (3) provide recommendations for research and policy initiatives to advance the transition toward sustainable thermal energy systems in ORDCs. The review highlights practical approaches for diversifying energy sources in these nations, focusing on overcoming existing barriers and supporting the implementation of clean thermal technologies.

Keywords

sustainable development, Physics, QC1-999, oil-rich developing countries, electricity, low-carbon, clean thermal generation, energy diversification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research