Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fluidsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fluids
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fluids
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations into the Effect of Mixing on Steam–Water Two-Phase Subsonic Cross-Flow Stability

Authors: Hassan Ali Ghazwani; Khairuddin Sanaullah; Vladimir Vladimirovich Sinitsin; Afrasyab Khan;

Investigations into the Effect of Mixing on Steam–Water Two-Phase Subsonic Cross-Flow Stability

Abstract

Theoretical and experimental aspects of the project were conducted to investigate the effect of the mixing of a swirling steam jet into cross-flowing water. It was observed that based on the theoretical adiabatic estimations for the equilibrium temperature of steam–water mixing and by varying Psteam = 1–3 bar, Pwater = 1 bar and RPM = 60–300 around 97% (experimentally compared to the area it has at initial condition) and 85% (CFD study compared to the area it has at initial condition), an increase in the area under the influence of perfect adiabatic mixing was found. A virtual cover over the steam duct was seen. The area of this virtual cover based on the void fraction of swirling steam had a weak relationship with the total area of the region, inhibiting the perfect mixing for which an analytical relationship had been developed. The effect of mixing on the stability of swirling steam–water cross-flows was overall more than twice that of the effect on the area under the influence of the stability profile protrusions. Thus, an overall rise in inlet pressure contributed to improper mixing, whereas a rise in the RPM contributed to proper mixing inside a fixed window of observations. The effect of spatial scaling of a swirling steam trajectory on mixing in cross-flowing water was also investigated across the vertical plane. Also, the scaling of the vertical trajectories of the swirling steam jets under all operating conditions resulted in merging the regions of perfect mixing to some extent. Thus, the area under the influence of perfect mixing was reduced to around 3–4.7% under all operating conditions with scaling. This type of scaling has enormous potential for the characterization of larger fluid domains in environmental and process engineering studies.

Related Organizations
Keywords

QC120-168.85, steam–water, scaling, stability, swirling, Descriptive and experimental mechanics, cross-flow, Thermodynamics, QC310.15-319

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold