Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fractal and Fraction...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fractal and Fractional
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fractal and Fractional
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
Data sources: VBN
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Voltage Controller Design for Offshore Wind Turbines: A Machine Learning-Based Fractional-Order Model Predictive Method

Authors: Ashkan Safari; Hossein Hassanzadeh Yaghini; Hamed Kharrati; Afshin Rahimi; Arman Oshnoei;

Voltage Controller Design for Offshore Wind Turbines: A Machine Learning-Based Fractional-Order Model Predictive Method

Abstract

Integrating renewable energy sources (RESs), such as offshore wind turbines (OWTs), into the power grid demands advanced control strategies to enhance efficiency and stability. Consequently, a Deep Fractional-order Wind turbine eXpert control system (DeepFWX) model is developed, representing a hybrid proportional/integral (PI) fractional-order (FO) model predictive random forest alternating current (AC) bus voltage controller designed explicitly for OWTs. DeepFWX aims to address the challenges associated with offshore wind energy systems, focusing on achieving the smooth tracking and state estimation of the AC bus voltage. Extensive comparative analyses were performed against other state-of-the-art intelligent models to assess the effectiveness of DeepFWX. Key performance indicators (KPIs) such as MAE, MAPE, RMSE, RMSPE, and R2 were considered. Superior performance across all the evaluated metrics was demonstrated by DeepFWX, as it achieved MAE of [15.03, 0.58], MAPE of [0.09, 0.14], RMSE of [70.39, 5.64], RMSPE of [0.34, 0.85], as well as the R2 of [0.99, 0.99] for the systems states [X1, X2]. The proposed hybrid approach anticipates the capabilities of FO modeling, predictive control, and random forest intelligent algorithms to achieve the precise control of AC bus voltage, thereby enhancing the overall stability and performance of OWTs in the evolving sector of renewable energy integration.

Country
Denmark
Keywords

QA299.6-433, fractional-order modeling, advanced intelligent control, intelligent models, machine learning, QA1-939, Thermodynamics, offshore wind turbines, AC bus voltage, state estimation, QC310.15-319, renewable energy systems, Mathematics, Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold