Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuels
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fuels
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Experimental Study of the Emission Characteristics and Soot Emission of Fatty Acid Methyl Esters (FAME) in an Industrial Burner

Authors: István Péter Kondor; Krisztián Kun;

An Experimental Study of the Emission Characteristics and Soot Emission of Fatty Acid Methyl Esters (FAME) in an Industrial Burner

Abstract

The aim of this research is to investigate the environmental emission effects and combustion properties of burning different types of FAME biodiesel fuels in an industrial oil burner. These burner heads are used in many areas of industry for heating various boilers and tube furnaces. The fuels used, the area of use, the emission norm values, and the climatic conditions are key factors in this investigation. In this research, two plant-based oils are examined, the properties of which have been compared to standard commercial heating oil. The raw material of the two tested bio-based components was rapeseed. The main gas emission parameters CO, THC, CO2, O2, HC, water content, and consumption data were measured. The measurements were performed in an AVL engine brake platform infrastructure, where gas emissions were measured with an AVL AMA i60 FTIR emission gas analyzer, fuel consumption was meticulously gauged using a fuel flow meter, fuel temperature was monitored using an AVL 745 fuel temperature conditioning system, and air consumption was measured with an AVL Flowsonix intake air flow meter. The measurement results showed that both tested biofuels can be burned stably in industrial oil burners, have favorable properties in terms of ignition and flame extinction tendencies, and there is no significant difference in emission parameters compared to standard fuel oil.

Related Organizations
Keywords

TP315-360, emission, biodiesel, Fuel, FAME

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research