
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality

Most authors apply the Granger causality-VECM (vector error correction model), and Toda–Yamamoto procedures to investigate the relationships among fossil fuel consumption, CO 2 emissions, and economic growth, though they ignore the group joint effects and nonlinear behaviour among the variables. In order to circumvent the limitations and bridge the gap in the literature, this paper combines cointegration and linear and nonlinear Granger causality in multivariate settings to investigate the long-run equilibrium, short-run impact, and dynamic causality relationships among economic growth, CO 2 emissions, and fossil fuel consumption in China from 1965–2016. Using the combination of the newly developed econometric techniques, we obtain many novel empirical findings that are useful for policy makers. For example, cointegration and causality analysis imply that increasing CO 2 emissions not only leads to immediate economic growth, but also future economic growth, both linearly and nonlinearly. In addition, the findings from cointegration and causality analysis in multivariate settings do not support the argument that reducing CO 2 emissions and/or fossil fuel consumption does not lead to a slowdown in economic growth in China. The novel empirical findings are useful for policy makers in relation to fossil fuel consumption, CO 2 emissions, and economic growth. Using the novel findings, governments can make better decisions regarding energy conservation and emission reductions policies without undermining the pace of economic growth in the long run.
- Education University of Hong Kong China (People's Republic of)
- Northeast Normal University China (People's Republic of)
- China Medical University Hospital Taiwan
- Northwest Normal University China (People's Republic of)
- University of Hong Kong China (People's Republic of)
China, Fossil Fuels, CO emissions, Gross domestic product, Article, CO<sub>2</sub> emissions, granger causality, SDG 3 - Good Health and Well-being, energy consumption, SDG 7 - Affordable and Clean Energy, Economic growth, Vehicle Emissions, Models, Statistical, gross domestic product, SDG 8 - Decent Work and Economic Growth, Carbon Dioxide, economic growth, Energy consumption, Granger causality, Economic Development, Environmental Monitoring, Forecasting
China, Fossil Fuels, CO emissions, Gross domestic product, Article, CO<sub>2</sub> emissions, granger causality, SDG 3 - Good Health and Well-being, energy consumption, SDG 7 - Affordable and Clean Energy, Economic growth, Vehicle Emissions, Models, Statistical, gross domestic product, SDG 8 - Decent Work and Economic Growth, Carbon Dioxide, economic growth, Energy consumption, Granger causality, Economic Development, Environmental Monitoring, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
