
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Spatially Highly Resolved Ground Mounted and Rooftop Potential Analysis for Photovoltaics in Austria

doi: 10.3390/ijgi10060418
A Spatially Highly Resolved Ground Mounted and Rooftop Potential Analysis for Photovoltaics in Austria
Austria aims to meet 100% of its electricity demand from domestic renewable sources by 2030 which means, that an additional 27 TWh/a of renewable electricity generation are required, thereof 11 TWh/a from photovoltaic. While some federal states and municipalities released a solar rooftop cadastre, there is lacking knowledge on the estimation of the potential of both, ground mounted installations and rooftop modules, on a national level with a high spatial resolution. As a first, in this work data on agricultural land-use is combined with highly resolved data on buildings on a national level. Our results show significant differences between urban and rural areas, as well as between the Alpine regions and the Prealpine- and Easter Plain areas. Rooftop potential concentrates in the big urban areas, but also in densely populated areas in Lower- and Upper Austria, Styria and the Rhine valley of Vorarlberg. The ground mounted photovoltaic potential is highest in Eastern Austria. This potential is geographically consistent with the demand and allows for a production close to the consumer. In theory, the goal of meeting 11 TWh/a in 2030 can be achieved solely with the rooftop PV potential. However, considering the necessary installation efforts, the associated costs of small and dispersed production units and finally the inherent uncertainty with respect to the willingness of tens of thousands of individual households to install PV systems, installing the necessary solar PV on buildings alone is constrained.
- University of Natural Resources and Life Sciences Austria
- UNIVERSITAET FUER BODENKULTUR WIEN Austria
- Forest Institute United States
- Forest Institute United States
- University of Klagenfurt Austria
photovoltaic, ground mounted, Geography (General), potential, Austria, rooftop, G1-922
photovoltaic, ground mounted, Geography (General), potential, Austria, rooftop, G1-922
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
