
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate

K2CO3-Modified Smectites as Basic Catalysts for Glycerol Transcarbonation to Glycerol Carbonate
A novel and cost-effective heterogeneous catalyst for glycerol carbonate production through transesterification was developed by impregnating smectite clay with K2CO3. Comprehensive structural and chemical analyses, including X-ray diffraction Analysis (XRD), Scanning Electron Microscopy (SEM)-Electron Dispersion Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis measurements, were employed to characterize the catalysts. Among the various catalysts prepared, the one impregnated with 40 wt% K2CO3 on smectite and calcined at 550 °C exhibited the highest catalytic activity, primarily due to its superior basicity. To enhance the efficiency of the transesterification process, several reaction parameters were optimized, including the molar ratio between propylene carbonate and glycerol reactor loading of the catalyst and reaction temperature. The highest glycerol carbonate conversion rate, approximately 77.13% ± 1.2%, was achieved using the best catalyst under the following optimal conditions: 2 wt% reactor loading, 110 °C reaction temperature, 2:1 propylene carbonate to glycerol molar ratio, and 6h reaction duration. Furthermore, both the raw clay and the best calcined K2CO3-impregnated catalysts demonstrated remarkable stability, maintaining their high activity for up to four consecutive reaction cycles. Finally, a kinetic analysis was performed using kinetic data from several runs employing raw clay and the most active K2CO3-modified clay at different temperatures, observing that a simple reversible second-order potential kinetic model of the quasi-homogeneous type fits perfectly to such data in diverse temperature ranges.
- Centre National de Recherches en Sciences des Materiaux Tunisia
- Department of Science and Technology South Africa
- Tunis El Manar University Tunisia
- "UNIVERSIDAD COMPLUTENSE DE MADRID Spain
- Department of Science and Technology South Africa
Glycerol, potassium carbonate, QH301-705.5, Silicates, transcarbonation, Carbonates, glycerol, Article, Chemistry, Kinetics, Propane, Tunisian smectite, organic carbonate, Clay, Biology (General), QD1-999
Glycerol, potassium carbonate, QH301-705.5, Silicates, transcarbonation, Carbonates, glycerol, Article, Chemistry, Kinetics, Propane, Tunisian smectite, organic carbonate, Clay, Biology (General), QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
