
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cu-Ion Hybrid Porous Carbon with Nanoarchitectonics Derived from Heavy-Metal-Contaminated Biomass as Ultrahigh-Performance Supercapacitor

It is challenging to handle heavy-metal-rich plants that grow in contaminated soil. The role of heavy metals in biomass on the physicochemical structure and electrochemical properties of their derived carbon has not been considered in previous research. In this study, Cu-ion hybrid nanoporous carbon (CHNC) is prepared from Cu content-contaminated biomass through subcritical hydrocharization (HTC) coupling pyrolytic activation processes. The CHNCs are used as advanced electrode material for energy storage applications, exhibiting an impressively ultrahigh capacitance of 562 F g−1 at a current density of 1 A g−1 (CHNC-700-4-25), excellent energy density of 26.15 W h kg−1, and only 7.59% capacitance loss after enduring 10,000 cycles at a current density of 10 A g−1, making CHNCs rank in the forefront of previously known carbon-based supercapacitor materials. These comprehensive characterizations demonstrate that copper ions introduce new electrochemically active sites and enhance the conductivity and charge transport performance of the electrode material, elevating the specific capacitance of CHNC from 463 to 562 F g−1. These findings offer valuable insights into the effective energy storage application of heavy-metal-contaminated biomass wastes.
- Fudan University China (People's Republic of)
- Henan University China (People's Republic of)
- Fudan University China (People's Republic of)
Metals, Heavy, Biomass, Electric Capacitance, Porosity, Electrodes, Article, Copper, Carbon
Metals, Heavy, Biomass, Electric Capacitance, Porosity, Electrodes, Article, Copper, Carbon
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
