
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine) Copper(I) Dyes for Dye-Sensitized Solar Cells

A systematic investigation of four heteroleptic bis(diimine) copper(I) dyes in n-type Dye-Sensitized Solar Cells (DSSCs) is presented. The dyes are assembled using a stepwise, on-surface assembly. The dyes contain a phosphonic acid-functionalized 2,2′-bipyridine (bpy) anchoring domain (5) and ancillary bpy ligands that bear peripheral phenyl (1), 4-methoxyphenyl (2), 3,5-dimethoxyphenyl (3), or 3,4,5-trimethoxyphenyl (4) substituents. In masked DSSCs, the best overall photoconversion efficiency was obtained with the dye [Cu(5)(4)]+ (1.96% versus 5.79% for N719). Values of JSC for both [Cu(5)(2)]+ (in which the 4-MeO group is electron releasing) and [Cu(5)(4)]+ (which combines electron-releasing and electron-withdrawing effects of the 4- and 3,5-substituents) and are enhanced with respect to [Cu(5)(1)]+. DSSCs with [Cu(5)(3)]+ show the lowest JSC. Solid-state absorption spectra and external quantum efficiency spectra reveal that [Cu(5)(4)]+ benefits from an extended spectral range at higher energies. Values of VOC are in the order [Cu(5)(4)]+ > [Cu(5)(1)]+ > [Cu(5)(2)]+ > [Cu(5)(3)]+. Density functional theory calculations suggest that methoxyphenyl character in MOs within the HOMO manifold in [Cu(5)(2)]+ and [Cu(5)(4)]+ may contribute to the enhanced performances of these dyes with respect to [Cu(5)(1)]+.
- University of Basel Switzerland
methoxy-substitution, copper, solar energy conversion, dye-sensitized solar cell, copper; 2,2′-bipyridine; dye-sensitized solar cell; solar energy conversion; methoxy-substitution, 2,2′-bipyridine, Inorganic chemistry, QD146-197
methoxy-substitution, copper, solar energy conversion, dye-sensitized solar cell, copper; 2,2′-bipyridine; dye-sensitized solar cell; solar energy conversion; methoxy-substitution, 2,2′-bipyridine, Inorganic chemistry, QD146-197
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
