
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Versatile SALSAC Approach to Heteroleptic Copper(I) Dye Assembly in Dye-Sensitized Solar Cells

The Versatile SALSAC Approach to Heteroleptic Copper(I) Dye Assembly in Dye-Sensitized Solar Cells
Surface-bound heteroleptic copper(I) dyes [Cu(Lanchor)(Lancillary)]+ are assembled using the “surfaces-as-ligands, surfaces as complexes” (SALSAC) approach by three different procedures. The anchoring and ancillary ligands chosen are ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl)-bis(4,1-phenylene))bis(phosphonic acid) (3) and 4,4′-bis(4-iodophenyl)-6,6′-diphenyl-2,2′-bipyridine (4), respectively. In the first SALSAC procedure, the FTO/TiO2 electrode is functionalized with 3 in the first dye bath, and then undergoes ligand exchange with the homoleptic complex [Cu(4)2][PF6] to give surface-bound [Cu(3)(4)]+. In the second method, the FTO/TiO2 electrode functionalized with 3 is immersed in a solution containing a 1:1 mixture of [Cu(MeCN)4][PF6] and 4 to give surface-anchored [Cu(3)(4)]+. In the third procedure, the anchor 3, copper(I) ion and ancillary ligand 4 are introduced in a sequential manner. The performances of the DSSCs show a dependence on the dye assembly procedure. The sequential method leads to the best-performing DSSCs with the highest values of JSC (7.85 and 7.73 mA cm−2 for fully masked cells) and overall efficiencies (η = 2.81 and 2.71%, representing 41.1 and 39.6% relative to an N719 reference DSSC). Use of the 1:1 mixture of [Cu(MeCN)4][PF6] and 4 yields DSSCs with higher VOC values but lower JSC values compared to those assembled using the sequential approach; values of η are 2.27 and 2.29% versus 6.84% for the N719 reference DSSC. The ligand exchange procedure leads to DSSCs that perform relatively poorly. The investigation demonstrates the versatile and powerful nature of SALSAC in preparing dyes for copper-based DSSCs, allowing the photoconversion efficiency of dye to be optimized for a given dye. The SALSAC strategy provides alternative hierarchical strategies where the isolation of the homoleptic [Cu(Lancillary)2]+ is difficult or time-consuming; stepwise strategies are more atom-economic than ligand exchange involving the homoleptic [Cu(Lancillary)2]+.
- University of Basel Switzerland
copper; 2,2′-bipyridine; dye-sensitized solar cell; solar energy conversion; iodo-substitution; stepwise surface dye assembly, iodo-substitution, copper, solar energy conversion, dye-sensitized solar cell, stepwise surface dye assembly, 2,2′-bipyridine, Inorganic chemistry, QD146-197
copper; 2,2′-bipyridine; dye-sensitized solar cell; solar energy conversion; iodo-substitution; stepwise surface dye assembly, iodo-substitution, copper, solar energy conversion, dye-sensitized solar cell, stepwise surface dye assembly, 2,2′-bipyridine, Inorganic chemistry, QD146-197
2 Research products, page 1 of 1
- 2008IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
