
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Internet of Things Smart Beehive Network: Homogeneous Data, Modeling, and Forecasting the Honey Robbing Phenomenon

The role of experimental data and the use of IoT-based monitoring systems are gaining broader significance in research on bees across several aspects: bees as global pollinators, as biosensors, and as examples of swarm intelligence. This increases the demands on monitoring systems to obtain homogeneous, continuous, and standardized experimental data, which can be used for machine learning, enabling models to be trained on new online data. However, the continuous operation of monitoring systems introduces new risks, particularly the cumulative impact of electromagnetic radiation on bees and their behavior. This highlights the need to balance IoT energy consumption, functionality, and continuous monitoring. We present a novel IoT-based bee monitoring system architecture that has been operating continuously for several years, using solar energy only. The negative impact of IoT electromagnetic fields is minimized, while ensuring homogeneous and continuous data collection. We obtained experimental data on the adverse phenomenon of honey robbing, which involves elements of swarm intelligence. We demonstrate how this phenomenon can be predicted and illustrate the interactions between bee colonies and the influence of solar radiation. The use of criteria for detecting honey robbing will help to reduce the spread of diseases and positively contribute to the sustainable development of precision beekeeping.
Technological innovations. Automation, IoT, Engineering machinery, tools, and implements, wireless sensor network, machine learning, HD45-45.2, precision apiculture, solar energy, smart hive, TA213-215
Technological innovations. Automation, IoT, Engineering machinery, tools, and implements, wireless sensor network, machine learning, HD45-45.2, precision apiculture, solar energy, smart hive, TA213-215
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
