Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Inventionsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Inventions
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Inventions
Article . 2025
Data sources: DOAJ
versions View all 2 versions

Internet of Things Smart Beehive Network: Homogeneous Data, Modeling, and Forecasting the Honey Robbing Phenomenon

Authors: Igor Kurdin; Aleksandra Kurdina;

Internet of Things Smart Beehive Network: Homogeneous Data, Modeling, and Forecasting the Honey Robbing Phenomenon

Abstract

The role of experimental data and the use of IoT-based monitoring systems are gaining broader significance in research on bees across several aspects: bees as global pollinators, as biosensors, and as examples of swarm intelligence. This increases the demands on monitoring systems to obtain homogeneous, continuous, and standardized experimental data, which can be used for machine learning, enabling models to be trained on new online data. However, the continuous operation of monitoring systems introduces new risks, particularly the cumulative impact of electromagnetic radiation on bees and their behavior. This highlights the need to balance IoT energy consumption, functionality, and continuous monitoring. We present a novel IoT-based bee monitoring system architecture that has been operating continuously for several years, using solar energy only. The negative impact of IoT electromagnetic fields is minimized, while ensuring homogeneous and continuous data collection. We obtained experimental data on the adverse phenomenon of honey robbing, which involves elements of swarm intelligence. We demonstrate how this phenomenon can be predicted and illustrate the interactions between bee colonies and the influence of solar radiation. The use of criteria for detecting honey robbing will help to reduce the spread of diseases and positively contribute to the sustainable development of precision beekeeping.

Related Organizations
Keywords

Technological innovations. Automation, IoT, Engineering machinery, tools, and implements, wireless sensor network, machine learning, HD45-45.2, precision apiculture, solar energy, smart hive, TA213-215

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities