
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Underwater Image Restoration via DCP and Yin–Yang Pair Optimization

doi: 10.3390/jmse10030360
Underwater image restoration is a challenging problem because light is attenuated by absorption and scattering in water, which can degrade the underwater image. To restore the underwater image and improve its contrast and color saturation, a novel algorithm based on the underwater dark channel prior is proposed in this paper. First of all, in order to reconstruct the transmission maps of the underwater image, the transmission maps of the blue and green channels are optimized by the proposed first-order and second-order total variational regularization. Then, an adaptive model is proposed to improve the first-order and second-order total variation. Finally, to solve the problem of the excessive attenuation of the red channel, the transmission map of the red channel is compensated by Yin–Yang pair optimization. The simulation results show that the proposed restored algorithm outperforms other approaches in terms of the visual effects, average gradient, spatial frequency, percentage of saturated pixels, underwater color image quality evaluation and evaluation metric.
- Henan Normal University China (People's Republic of)
visual effect, Naval architecture. Shipbuilding. Marine engineering, VM1-989, Yin–Yang pair optimization, red channel compensation, GC1-1581, Oceanography, dark channel prior, underwater image restoration; dark channel prior; Yin–Yang pair optimization; visual effect; red channel compensation, underwater image restoration
visual effect, Naval architecture. Shipbuilding. Marine engineering, VM1-989, Yin–Yang pair optimization, red channel compensation, GC1-1581, Oceanography, dark channel prior, underwater image restoration; dark channel prior; Yin–Yang pair optimization; visual effect; red channel compensation, underwater image restoration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
