
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of Land Use/Land Cover Changes on Carbon Storage in North African Coastal Wetlands

doi: 10.3390/jmse10030364
Healthy wetlands are among the most effective sinks for carbon on the planet, and thus contribute to mitigate climate change. However, in North Africa, coastal wetlands are under high pressure especially from urban sprawl and tourism development, due to the rapid population growth and migration. This paper analyzed the effects of land use/land cover changes on carbon stocks, over 20 years, in six North African coastal wetlands, and estimated the economic value of the carbon sequestered during the considered period. The methodology used combined remote sensing and modeling. The results showed that among the six studied sites, only two (Moulouya and Moulay Bouselham) showed an increase in stored carbon and therefore are potential carbon sinks. In turn, the other four showed a more or less significant loss of carbon, which will likely be released into the atmosphere. The underlying processes that drive changes in carbon dynamics are mainly urban expansion and land use conversion, which often occurs at the expense of the natural habitats surrounding the wetlands. Understanding these processes can provide valuable decision-making information for land use planning, wetlands conservation and carbon reduction policies.
- Louisiana Universities Marine Corsortium United States
- Louisiana Universities Marine Corsortium United States
- Mohammed V University Morocco
- Louisiana Universities Marine Consortium United States
carbon stocks; InVEST model; climate change; sequestration; economic value, Naval architecture. Shipbuilding. Marine engineering, VM1-989, sequestration, GC1-1581, Oceanography, carbon stocks, climate change, InVEST model, economic value
carbon stocks; InVEST model; climate change; sequestration; economic value, Naval architecture. Shipbuilding. Marine engineering, VM1-989, sequestration, GC1-1581, Oceanography, carbon stocks, climate change, InVEST model, economic value
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
