Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantitative Analysis of the Interaction between Wind Turbines and Topography Change in Intertidal Wind Farms by Remote Sensing

Authors: Huiming Zhang; Dong Zhang; Yong Zhou; Mark E. J. Cutler; Dandan Cui; Zhuo Zhang;

Quantitative Analysis of the Interaction between Wind Turbines and Topography Change in Intertidal Wind Farms by Remote Sensing

Abstract

Offshore wind farms have developed rapidly in Jiangsu Province, China, over the last decade. The existence of offshore wind turbines will inevitably impact hydrological and sedimentary environments. In this paper, a digital elevation model (DEM) of the intertidal sandbank in southern Jiangsu Province from 2018 to 2020 was constructed based on the improved remote sensing waterline method. On this basis, the stability of the sandbank was analysed, and combined with the hypothetical sandbank surface discrimination method (HSSDM), the erosional/depositional influences of wind turbine construction on topography were quantitatively analysed. The results show that due to the frequent oscillations of the tidal channels, only 35.03% of the study area has a stable topography, and more than 90% of the wind turbines in all years have a balanced impact on the intensity of topographic change, and all see a small reduction in their impact in the following year. The remaining wind turbines with erosional/depositional impacts are mainly located in areas with unstable topography, but the overall impact of all wind turbines is balanced in 2018–2020. The impact of wind turbines on topography is both erosional and depositional, but the overall intensity of the impact is not significant. This study demonstrates the quantitative effects of wind turbine construction on topography and provides some help for wind turbine construction site selection and monitoring after turbine completion.

Country
United Kingdom
Keywords

/dk/atira/pure/subjectarea/asjc/2200/2205, 550, Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, Oceanography, wind turbine, topographic change, topographic stability, wind turbine; digital elevation model (DEM); topographic change; hypothetical sandbank surface discrimination method (HSSDM); topographic stability, name=Ocean Engineering, name=Civil and Structural Engineering, name=Water Science and Technology, hypothetical sandbank surface discrimination method (HSSDM), /dk/atira/pure/subjectarea/asjc/2300/2312, digital elevation model (DEM), /dk/atira/pure/subjectarea/asjc/2200/2212

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold