
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Techno-Economic Optimal Sizing Design for a Tidal Stream Turbine–Battery System

doi: 10.3390/jmse11030679
This article deals with the techno-economic optimal sizing of a tidal stream turbine (TST)–battery system. In this study, the TST system consists of a turbine rotor and a permanent magnet synchronous generator (PMSG) associated with a three-phase converter coupled to a DC bus. A battery is used within the system as an energy storage system to absorb excess produced power or cover power deficits. To determine the optimal sizing of the system, an iterative approach was used owing to its ease of implementation, high accuracy, and fast convergence speed, even under environmental constraints such as swell and wave effects. This technique is based on robust energy management, and the recursive algorithm includes the deficiency of power supply probability (DPSP) and the relative excess power generation (REPG) as technical criteria for the system reliability study, and the energy cost (EC) and the total net present cost (TNPC) as economic criteria for the system cost study. As data inputs, the proposed approach used the existing data from the current speed profile, the load, and economic parameters. The desired output is the system component optimal sizing (TST power, and battery capacity). In this paper, the system sizing was studied during a one-year time period to ensure a more reliable and economical system. The results are compared to well-known methods such as genetic algorithms, particle swarm optimization, and software-based (HOMER) approaches. The optimization results confirm the efficiency of the proposed approach in sizing the system, which was simulated using real-world tidal velocity data from a specific deployment site.
- Université de Bretagne Occidentale France
- University of Monastir Tunisia
- University of Monastir Tunisia
- Shanghai Maritime University China (People's Republic of)
- Institut de Recherche Dupuy de Lôme France
algorithm, energy management, Naval architecture. Shipbuilding. Marine engineering, VM1-989, 006, GC1-1581, Oceanography, [SPI]Engineering Sciences [physics], tidal stream turbine; battery; optimal sizing; algorithm; energy management; cost-minimization; reliability, optimal sizing, cost-minimization, battery, tidal stream turbine
algorithm, energy management, Naval architecture. Shipbuilding. Marine engineering, VM1-989, 006, GC1-1581, Oceanography, [SPI]Engineering Sciences [physics], tidal stream turbine; battery; optimal sizing; algorithm; energy management; cost-minimization; reliability, optimal sizing, cost-minimization, battery, tidal stream turbine
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
