
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multiple Feature Extraction Long Short-Term Memory Using Skip Connections for Ship Electricity Forecasting

doi: 10.3390/jmse11091690
The power load data of electric-powered ships vary with the ships’ operational status and external environmental factors such as sea conditions. Therefore, a model is required to accurately predict a ship’s power load, which depends on changes in the marine environment, weather environment, and the ship’s situation. This study used the power data of an actual ship to predict the power load of the ship. The research on forecasting a ship’s power load fluctuations has been quite limited, and the existing models have inherent limitations in predicting these fluctuations accurately. In this paper, A multiple feature extraction (MFE)-long short-term memory (LSTM) model with skip connections is introduced to address the limitations of existing deep learning models. This novel approach enables the analysis and forecasting of the intricate load variations in ships, thereby facilitating the prediction of complex load fluctuations. The performance of the model was compared with that of a previous convolutional neural network-LSTM network with a squeeze and excitation (SE) model and deep feed-forward (DFF) model. The metrics used for comparison were the mean absolute error, root mean squared error, mean absolute percentage error, and R-squared, wherein the best, average, and worst performances were evaluated for both models. The proposed model exhibited a superior predictive performance for the ship’s power load compared to that of existing models, as evidenced by the performance metrics: mean absolute error (MAE) of 55.52, root mean squared error of (RMSE) 125.62, mean absolute percentage error (MAPE) of 3.56, and R-squared (R2) of 0.86. Therefore, the proposed model is expected to be used for power load prediction during electric-powered ship operations.
- Korea Maritime and Ocean University Korea (Republic of)
- Korea Maritime and Ocean University Korea (Republic of)
multiple feature extraction, Naval architecture. Shipbuilding. Marine engineering, ship power load, VM1-989, GC1-1581, Oceanography, LSTM prediction, ship power load; multiple feature extraction; LSTM prediction
multiple feature extraction, Naval architecture. Shipbuilding. Marine engineering, ship power load, VM1-989, GC1-1581, Oceanography, LSTM prediction, ship power load; multiple feature extraction; LSTM prediction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
