Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Study on Numerical Calculation of Modal Characteristics of Pump-Turbine Shaft System

Authors: Xuyang Liu; Jiayang Pang; Lei Li; Weiqiang Zhao; Yupeng Wang; Dandan Yan; Lingjiu Zhou; +1 Authors

Comparative Study on Numerical Calculation of Modal Characteristics of Pump-Turbine Shaft System

Abstract

Because a pump-turbine mainly undertakes the role of energy conversion and pumped storage in the field of hydropower engineering, the complex transition process and frequent conversion between different working conditions lead to the increase in the stress and strain of core components such as the unit shaft system, and even cause resonance phenomena. Based on ANSYS finite element numerical calculation software, this paper adopts the acoustic fluid–structure coupling method to study the influence of the shaft of the pump-turbine on the dynamic characteristics of the runner. At the same time, the paper analyses the influence of different contact modes between the runner and the shaft on the modal characteristics of the shaft system. The numerical simulation results have shown that the runner is affected by the added mass of the water. The natural frequency reduction rate of each order of wet modal is ranged from 19% to 64%. The main shaft has a greater influence on the simplification of the shaft system calculation method. The type of contact surface between the main shaft and the runner has a smaller influence on the modal characteristics and the natural frequency of the shaft system. The research in this paper contributes an evaluation of the dynamic characteristics of the runner of a hydraulic turbine unit, which is of great significance for the optimization of the analysis algorithm of the runner structure for large pumped storage units.

Related Organizations
Keywords

Naval architecture. Shipbuilding. Marine engineering, VM1-989, numerical calculation, GC1-1581, Oceanography, modal analysis, pumped storage power station, natural frequency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold