Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interannual and Seasonal Variability of CO2 Parameters in the Tropical Atlantic Ocean

Authors: Frederic Bonou; A. Nathanael Dossa; Adeola M. Dahunsi; Zacharie Sohou;

Interannual and Seasonal Variability of CO2 Parameters in the Tropical Atlantic Ocean

Abstract

This study examined the carbon cycling dynamics in the tropical Atlantic Ocean from 1985 to 2023, focusing on factors influencing the surface partial pressure of CO2 (pCO2), freshwater input, total alkalinity (ALK), total dissolved carbon (TCO2), and pH levels. The time series data revealed significant trends, with average pCO2 concentrations rising from approximately 350 μatm in the early 1990s to over 400 μatm by 2023. The TCO2 levels increased from about 2000 μmol/kg to 2200 μmol/kg, while ALK rose from approximately 2300 μmol/kg to 2500 μmol/kg. This increase highlights the ocean’s role as a carbon sink, particularly in areas with high biological productivity and upwelling where TCO2 also rose. This study employed Empirical Orthogonal Functions (EOFs) to identify variability modes and understand spatial patterns of pCO2. Freshwater dynamics significantly affect TCO2 concentrations, particularly in coastal regions, where pH can shift from 8.2 to 7.9, exacerbating acidification. Rising sea surface temperatures have been linked to elevated pCO2 values. These findings support the need for ongoing monitoring and effective management strategies to mitigate the impacts of climate change and ensure the sustainability of marine resources. This study documented the long-term trends in tropical Atlantic CO2 parameters linked to the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO).

Keywords

Naval architecture. Shipbuilding. Marine engineering, VM1-989, SOCAT CO<sub>2</sub> Atlas, ocean acidification, GC1-1581, Oceanography, climate change, tropical Atlantic Ocean, CO<sub>2</sub> parameters

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold