
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fuel Cell Application for Investigating the Quality of Electricity from Ship Hybrid Power Sources

doi: 10.3390/jmse7080241
Since recent marine application of fuel cell systems has been due largely limited to small-sized ships, this paper was aimed to investigate the technical applicability of molten carbonate fuel cell (MCFC) for medium and large-sized ships, using a 180 kW class hybrid test bed with combined power sources: A 100 kW MCFC, a 30 kW battery and a 50 kW diesel generator. This study focused primarily on determining whether the combined system designed in consideration of actual marine power system configuration could function properly. A case study was conducted with a 5500 Twenty-foot Equivalent Unit (TEU) container vessel. The operation profile was collected and analyzed in order to develop electric load scenarios applicable to the power system. Throughout the experiment, we evaluated the power quality of the voltage and frequency in the process of synchronization and de-synchronization across the power sources. Therefore, research results revealed that power quality continued to be excellent. This outcome provides insight into the technical reliability of MCFC application on large marine vessels.
- Korea Maritime and Ocean University Korea (Republic of)
- Korea Maritime and Ocean University Korea (Republic of)
Operation profile, Molten carbonate fuel cell (MCFC), Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, Oceanography, Power quality, Hybrid test bed
Operation profile, Molten carbonate fuel cell (MCFC), Naval architecture. Shipbuilding. Marine engineering, VM1-989, GC1-1581, Oceanography, Power quality, Hybrid test bed
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
