
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate Change Effects on Land Use and Land Cover Suitability in the Southern Brazilian Semiarid Region

doi: 10.3390/land13122008
Climate change is expected to alter the environmental suitability of land use and land cover (LULC) classes globally. In this study, we investigated the potential impacts of climate change on the environmental suitability of the most representative LULC classes in the southern Brazilian semiarid region. We employed the Random Forest algorithm trained with climatic, soil, and topographic data to project future LULC suitability under the Representative Concentration Pathway RCP 2.6 (optimistic) and 8.5 (pessimistic) scenarios. The climate data included the mean annual air temperature and precipitation from the WorldClim2 platform for historical (1970–2000) and future (2061–2080) scenarios. Soil data were obtained from the SoilGrids 2.1 digital soil mapping platform, while topographic data were produced by NASA’s Shuttle Radar Topography Mission (SRTM). Our model achieved an overall accuracy of 60%. Under the worst-case scenario (RCP 8.5), croplands may lose approximately 8% of their suitable area, while pastures are expected to expand by up to 30%. Areas suitable for savannas are expected to increase under both RCP scenarios, potentially expanding into lands historically occupied by forests, grasslands, and eucalyptus plantations. These projected changes may lead to biodiversity loss and socioeconomic disruptions in the study area.
drylands, S, Agriculture, scenarios analysis, climate change, land suitability, random forest
drylands, S, Agriculture, scenarios analysis, climate change, land suitability, random forest
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
