
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Evaluation and Numerical Investigations of the Cyclic Behavior of Smart Composite Steel–Concrete Shear Wall: Comprehensive Study of Finite Element Model
The composite shear wall has various merits over the traditional reinforced concrete walls. Thus, several experimental studies have been reported in the literature in order to study the seismic behavior of composite shear walls. However, few numerical investigations were found in the previous literature because of difficulties in the interaction behavior of steel and concrete. This study aimed to present a numerical analysis of smart composite shear walls, which use an infilled steel plate and concrete. The study was carried out using the ANSYS software. The mechanical mechanisms between the web plate and concrete were investigated thoroughly. The results obtained from the finite element (FE) analysis show excellent agreement with the experimental test results in terms of the hysteresis curves, failure behavior, ultimate strength, initial stiffness, and ductility. The present numerical investigations were focused on the effects of the gap, thickness of infill steel plate, thickness of the concrete wall, and distance between shear studs on the composite steel plate shear wall (CSPSW) behavior. The results indicate that increasing the gap between steel plate and concrete wall from 0 mm to 40 mm improved the stiffness by 18% as compared to the reference model, which led to delay failures of this model. Expanding the infill steel plate thickness to 12 mm enhanced the stiffness and energy absorption with a ratio of 95% and 58%, respectively. This resulted in a gradual drop in the strength capacity of this model. Meanwhile, increasing concrete wall thickness to 150 mm enhanced the ductility and energy absorption with a ratio of 52% and 32%, respectively, which led to restricting the model and reduced lateral offset. Changing the distance between shear studs from 20% to 25% enhanced the ductility and energy absorption by about 66% and 32%, respectively.
- King Khalid University Saudi Arabia
- Peter the Great St. Petersburg Polytechnic University Russian Federation
- King Khalid University Saudi Arabia
- Aligarh Muslim University India
- University of Diyala Iraq
finite element model, Technology, Microscopy, QC120-168.85, T, QH201-278.5, composite steel plate shear wall, hysteresis curves, Engineering (General). Civil engineering (General), ductility, Article, TK1-9971, Descriptive and experimental mechanics, composite steel plate shear wall; hysteresis curves; ductility; energy absorption; finite element model, Electrical engineering. Electronics. Nuclear engineering, energy absorption, TA1-2040
finite element model, Technology, Microscopy, QC120-168.85, T, QH201-278.5, composite steel plate shear wall, hysteresis curves, Engineering (General). Civil engineering (General), ductility, Article, TK1-9971, Descriptive and experimental mechanics, composite steel plate shear wall; hysteresis curves; ductility; energy absorption; finite element model, Electrical engineering. Electronics. Nuclear engineering, energy absorption, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
