Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2022
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System

Authors: Alaa A. Zaky; Mohamed N. Ibrahim; Ibrahim B. M. Taha; Bedir Yousif; Peter Sergeant; Evangelos Hristoforou; Polycarpos Falaras;

Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System

Abstract

Nowadays, water pumping systems based on photovoltaics as a source of electricity have widely increased. System cost and efficiency still require enhancement in order to spread their application. Perovskite solar cells (PSCs) are the most hopeful third-generation photovoltaic for replacing the silicon-based photovoltaic thanks to their high power conversion efficiency, reaching 25.8%; tunable band-gap; long diffusion length; low fabrication temperature; and low cost. In this work, for the first time, we proposed a high-power-density hybrid perovskite solar cell thermoelectric generator (TEG) array for feeding a synchronous reluctance motor (SynRM) driving a water pump for use in an irrigation system. A control technique was used to achieve two functions. The first function was driving the motor to obtain the maximum torque/ampere. The second was harvesting the maximum perovskite solar cell array output power on the basis of the maximum power point tracking (MPPT) algorithm using the perturbation and observation approach. Thus, the proposed hybrid perovskite solar cell–thermoelectric generator feeds the motor via an inverter without DC–DC converters or batteries. Accordingly, the short life problems and the high replacement cost are avoided. The proposed complete system was simulated via the MATLAB package. Moreover, a complete laboratory infrastructure was constructed for testing the proposed high-power-density hybrid perovskite solar cell–TEG array for the water pumping system. The results revealed that using the high-power-density hybrid perovskite solar cell–TEG array, both the motor’s output power and the pump’s flow rate were improved by 11% and 14%, respectively, compared to only using the perovskite solar cell array. Finally, both the simulation and experimental results proved the high-performance efficiency of the system in addition to showing its system complexity and cost reduction.

Country
Belgium
Keywords

perovskite solar cells; thermoelectric generator; synchronous reluctance motor; water pumping system; maximum power point tracking, water pumping system, Technology and Engineering, synchronous reluctance motor, General Mathematics, COST, thermoelectric generator, perovskite solar cells, maximum power point tracking, DESIGN, Computer Science (miscellaneous), QA1-939, OPTIMIZATION, Engineering (miscellaneous), Mathematics, IMPROVED PERFORMANCE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold