Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic Multi-Objective Scheduling of a Hybrid System in a Distribution Network Using a Mathematical Optimization Algorithm Considering Generation and Demand Uncertainties

Authors: Ali Hadi Abdulwahid; Muna Al-Razgan; Hassan Falah Fakhruldeen; Meryelem Tania Churampi Arellano; Vedran Mrzljak; Saber Arabi Nowdeh; Mohammad Jafar Hadidian Moghaddam;

Stochastic Multi-Objective Scheduling of a Hybrid System in a Distribution Network Using a Mathematical Optimization Algorithm Considering Generation and Demand Uncertainties

Abstract

In this paper, stochastic scheduling of a hybrid system (HS) composed of a photovoltaic (PV) array and wind turbines incorporated with a battery storage (HPV/WT/Batt) system in the distribution network was proposed to minimize energy losses, the voltage profile, and the HS cost, and to improve reliability in shape of the energy-not-supplied (ENS) index, considering energy-source generation and network demand uncertainties through the unscented transformation (UT). An improved escaping-bird search algorithm (IEBSA), based on the escape operator from the local optimal, was employed to identify the optimal location of the HS in the network in addition to the optimal quantity of PV panels, wind turbines, and batteries. The deterministic results for three configurations of HPV/WT/Batt, PV/Batt, and WT/Batt were presented, and the results indicate that the HPV/WT/Batt system is the optimal configuration with lower energy losses, voltage deviation, energy not supplied, and a lower HS energy cost than the other configurations. Deterministic scheduling according to the optimal configuration reduced energy losses, ENS, and voltage fluctuation by 33.09%, 53.56%, and 63.02%, respectively, compared to the base network. In addition, the results demonstrated that the integration of battery storage into the HPV/WT enhanced the various objectives. In addition, the superiority of IEBSA over several well-known algorithms was proved in terms of obtaining a faster convergence, better objective value, and lower HS costs. In addition, the stochastic scheduling results based on the UT revealed that the uncertainties increase the power losses, voltage deviations, ENS, and HPV/WT/Batt cost by 2.23%, 5.03%, 2.20%, and 1.91%, respectively, when compared to the deterministic scheduling.

Keywords

improved escaping-bird search algorithm, https://purl.org/pe-repo/ocde/ford#2.01.00, reliability, energy storage, Pendiente / Pendiente, stochastic multi-objective scheduling, unscented transformation, hybrid system, QA1-939, Pendiente, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold