
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Artificial Intelligence Based Modelling of Adsorption Water Desalination System

doi: 10.3390/math9141674
Artificial Intelligence Based Modelling of Adsorption Water Desalination System
The main target of this research work is to model the output performance of adsorption water desalination system (AWDS) in terms of switching and cycle time using artificial intelligence. The output performance of the ADC system is expressed by the specific daily water production (SDWP), the coefficient of performance (COP), and specific cooling power (SCP). A robust Adaptive Network-based Fuzzy Inference System (ANFIS) model of SDWP, COP, and SCP was built using the measured data. To demonstrate the superiority of the suggested ANFIS model, the model results were compared with those achieved by Analysis of Variance (ANOVA) based on the maximum coefficient of determination and minimum error between measured and estimated data in addition to the mean square error (MSE). Applying ANOVA, the average coefficient-of-determination values were 0.8872 and 0.8223, respectively, for training and testing. These values are increased to 1.0 and 0.9673, respectively, for training and testing thanks to ANFIS based modeling. In addition, ANFIS modelling decreased the RMSE value of all datasets by 83% compared with ANOVA. In sum, the main findings confirmed the superiority of ANFIS modeling of the output performance of adsorption water desalination system compared with ANOVA.
- Minia University Egypt
- Prince Sattam Bin Abdulaziz University Saudi Arabia
- King Abdulaziz University Saudi Arabia
- King Abdulaziz University Saudi Arabia
- Sohag University Egypt
adsorption desalination, artificial intelligence, artificial intelligence; modelling based ANFIS; adsorption desalination, QA1-939, modelling based ANFIS, Mathematics
adsorption desalination, artificial intelligence, artificial intelligence; modelling based ANFIS; adsorption desalination, QA1-939, modelling based ANFIS, Mathematics
5 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
