
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced MPPT-Based Fractional-Order PID for PV Systems Using Aquila Optimizer

doi: 10.3390/mca28050099
This paper proposes a controller to track the maximum power point (MPP) of a photovoltaic (PV) system using a fractional-order proportional integral derivative (FOPID) controller. The employed MPPT is operated based on a dp/dv feedback approach. The designed FOPID-MPPT method includes a differentiator of order (μ) and integrator of order (λ), meaning it is an extension of the conventional PID controller. FOPID has more flexibility and achieves dynamical tuning, which leads to an efficient control system. The contribution of our paper lies is optimizing FOPID-MPPT parameters using Aquila optimizer (AO). The obtained results with the proposed AO-based FOPID-MPPT are contrasted with those acquired with moth flame optimizer (MFO). The performance of our FOPID-MPPT controller with the conventional technique perturb and observe (P&O) and the classical PID controller is analyzed. In addition, a robustness test is used to assess the performance of the FOPID-MPPT controller under load variations, providing valuable insights into its practical applicability and robustness. The simulation results clearly prove the superiority and high performance of the proposed control system to track the MPP of PV systems.
- Chouaib Doukkali University Morocco
- Tafila Technical University Jordan
- Al Jouf University Saudi Arabia
- Chouaib Doukkali University Morocco
- Al Jouf University Saudi Arabia
T57-57.97, Applied mathematics. Quantitative methods, PID, moth flame optimizer, QA75.5-76.95, Aquila optimizer, FOPID, MPPT techniques, Electronic computers. Computer science, QA1-939, Mathematics, PV system
T57-57.97, Applied mathematics. Quantitative methods, PID, moth flame optimizer, QA75.5-76.95, Aquila optimizer, FOPID, MPPT techniques, Electronic computers. Computer science, QA1-939, Mathematics, PV system
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
