Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Moleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liquid–Liquid Equilibrium of Sesame Fatty Acid (Ethyl and Methyl) Ester + Glycerol + Ethanol/Methanol Mixtures at Different Temperatures

Authors: Anderson Silva; Guilherme Lopes; Marcos Corazza; Pedro Arce; Dayana Coêlho; Lucas Meili; Sandra Carvalho; +2 Authors

Liquid–Liquid Equilibrium of Sesame Fatty Acid (Ethyl and Methyl) Ester + Glycerol + Ethanol/Methanol Mixtures at Different Temperatures

Abstract

This study aimed to investigate the liquid–liquid equilibrium (LLE) behavior of sesame fatty acid ethyl ester (FAEE) and methyl ester (FAME) in combination with glycerol and the co-solvents ethanol and methanol. FAEE and FAME were produced through the transesterification of mechanically extracted and purified sesame oil, using potassium hydroxide (KOH) as a homogeneous base catalyst. The reactions were conducted in ethanol and methanol to produce FAEE and FAME, respectively. Post-reaction, the products were separated and purified, followed by an analysis of the LLE behavior at 313.15 K and 323.15 K under atmospheric pressure (101.3 kPa). The experimental process for the miscibility analysis utilized a jacketed glass cell adapted for this study. Miscibility limits or binodal curves were determined using the turbidity-point method. Tie lines were constructed by preparing mixtures of known concentrations within the two-phase region, which allowed the phases to separate after agitation. Samples from both phases were analyzed to determine their composition. This study revealed that higher temperatures promoted greater phase separation and enhanced the biodiesel purification process. The NRTL model effectively correlated the activity coefficients with the experimental data, showing good agreement, with a root-mean-square deviation of 3.5%. Additionally, the data quality was validated using Marcilla’s method, which yielded an R2 value close to 1. Attraction factors and distribution coefficients were also calculated to evaluate the efficiency of the co-solvents as extraction agents. The findings indicated higher selectivity for methanol than for ethanol, with varying degrees of distribution among the co-solvents. These results offer significant insights into enhancing biodiesel production processes by considering the effects of co-solvents on the LLE properties of mixtures, ultimately contributing to more efficient and cost-effective biodiesel production.

Keywords

alcohol, Organic chemistry, biodiesel, Article, sesame oil, QD241-441, NRTL, liquid–liquid equilibrium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Energy Research