
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Li4(OH)3Br-Based Shape Stabilized Composites for High-Temperature TES Applications: Selection of the Most Convenient Supporting Material

Peritectic compound Li4(OH)3Br has been recently proposed as phase change material (PCM) for thermal energy storage (TES) applications at approx. 300 °C Compared to competitor PCM materials (e.g., sodium nitrate), the main assets of this compound are high volumetric latent heat storage capacity (>140 kWh/m3) and very low volume changes (<3%) during peritectic reaction and melting. The objective of the present work was to find proper supporting materials able to shape stabilize Li4(OH)3Br during the formation of the melt and after its complete melting, avoiding any leakage and thus obtaining a composite apparently always in the solid state during the charge and discharge of the TES material. Micro-nanoparticles of MgO, Fe2O3, CuO, SiO2 and Al2O3 have been considered as candidate supporting materials combined with the cold-compression route for shape-stabilized composites preparation. The work carried out allowed for the identification of the most promising composite based on MgO nanoparticles through a deep experimental analysis and characterization, including chemical compatibility tests, anti-leakage performance evaluation, structural and thermodynamic properties analysis and preliminary cycling stability study.
- Université de Bordeaux France
- Université Bordeaux-I France
- UNIVERSITE DE BORDEAUX France
- Université de Bordeaux France
- University of Bordeaux France
thermal energy storage, supporting materials, Article, Chemistry, peritectic compound Li4(OH)3Br, phase change materials, shape stabilized composites, peritectic compound Li<sub>4</sub>(OH)<sub>3</sub>Br, oxides, QD1-999
thermal energy storage, supporting materials, Article, Chemistry, peritectic compound Li4(OH)3Br, phase change materials, shape stabilized composites, peritectic compound Li<sub>4</sub>(OH)<sub>3</sub>Br, oxides, QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
