
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Conductivity Enhancement of Atomic Layer Deposition Surface-Modified Carbon Nanosphere and Carbon Nanopowder Nanofluids

In this paper, we present a study on thermal conductivity and viscosity of nanofluids containing novel atomic layer deposition surface-modified carbon nanosphere (ALD-CNS) and carbon nanopowder (ALD-CNP) core-shell nanocomposites. The nanocomposites were produced by atomic layer deposition of amorphous TiO2. The nanostructures were characterised by scanning (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetry/differential thermal analysis (TG/DTA) and X-ray powder diffraction (XRD). High-concentration, stable nanofluids were prepared with 1.5, 1.0 and 0.5 vol% nanoparticle content. The thermal conductivity and viscosity of the nanofluids were measured, and their stability was evaluated with Zeta potential measurements. The ALD-CNS enhanced the thermal conductivity of the 1:5 ethanol:water mixture by 4.6% with a 1.5 vol% concentration, and the viscosity increased by 37.5%. The ALD-CNS increased the thermal conductivity of ethylene–glycol by 10.8, whereas the viscosity increased by 15.9%. The use of a surfactant was unnecessary due to the ALD-deposited TiO2 layer.
- Hungarian Academy of Sciences Hungary
- Budapest University of Technology and Economy Hungary
- University of Miskolc Hungary
- University of Szeged Hungary
- University of Szeged Hungary
nanofluid; atomic layer deposition; thermal conductivity; viscosity; carbon nanosphere; carbon nanopowder; titanium dioxide, carbon nanosphere, Article, Chemistry, atomic layer deposition, viscosity, carbon nanopowder, nanofluid, thermal conductivity, QD1-999
nanofluid; atomic layer deposition; thermal conductivity; viscosity; carbon nanosphere; carbon nanopowder; titanium dioxide, carbon nanosphere, Article, Chemistry, atomic layer deposition, viscosity, carbon nanopowder, nanofluid, thermal conductivity, QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
