
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Metaheuristic Approach for Solar Photovoltaic Parameter Extraction Using Manufacturer Data

Solar photovoltaic (PV) panel parameter estimation is vital to manage solar-based microgrid operations, for which several techniques have been developed. Solar cell modeling using metaheuristic algorithms is found to be one of the accurate techniques. However, it requires experimental datasets, which may not be available for most of the industrial modules. Therefore, this study proposed a new model to estimate the solar parameters for two types of PV panels using manufacturer datasheets only. In addition, two optimization techniques called particle swarm optimization (PSO) and genetic algorithm (GA) were also investigated for solving this problem. The predicted results showed that GA is more accurate than PSO, but PSO is faster. The new model was tested under different solar radiation conditions and found to be accurate under all conditions, with an error which varied between 7.6212 × 10−4 under standard testing conditions and 0.0032 at 200 W/m2 solar radiation. Further comparison of the proposed method with other methods in the literature showed its capability to compete with other models despite not using experimental datasets. The study is of significance for the sustainable energy management of newly established commercial PV micro grids.
- National Institute of Advanced Industrial Science and Technology Japan
- King Saud University Saudi Arabia
- Shoolini University India
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi MARA Malaysia
photovoltaics, metaheuristic techniques, microgrids, sustainable energy, Applied optics. Photonics, sustainable development goals, photovoltaics; sustainable energy; sustainable development goals; microgrids; metaheuristic techniques, TA1501-1820
photovoltaics, metaheuristic techniques, microgrids, sustainable energy, Applied optics. Photonics, sustainable development goals, photovoltaics; sustainable energy; sustainable development goals; microgrids; metaheuristic techniques, TA1501-1820
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
