
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Ultra Local Based-Fuzzy PIDF Controller for Frequency Regulation of a Hybrid Microgrid System with High Renewable Energy Penetration and Storage Devices

doi: 10.3390/pr11041093
A new ultra-local control (ULC) model and two marine predator algorithm (MPA)-based controllers; MPA-based proportional-integral-derivative with filter (PIDF) and MPA-based Fuzzy PIDF (FPIDF) controllers; are combined to enhance the frequency response of a hybrid microgrid system. The input scaling factors, boundaries of membership functions, and gains of the FPIDF con-troller are all optimized using the MPA. In order to further enhance the frequency response, the alpha parameter of the proposed ULC model is optimized using MPA. The performance of the pro-posed controller is evaluated in the microgrid system with different renewable energy sources and energy storage devices. Furthermore, a comparison of the proposed MPA-based ULC-PIDF and ULC-FPIDF controllers against the previously designed controllers is presented. Moreover, a vari-ety of scenarios are studied to determine the proposed controller’s sensitivity and robustness to changes in wind speed, step loads, solar irradiance, and system parameter changes. The results of time-domain simulations performed in MATLAB/SIMULINK are shown. Finally, the results demonstrate that under all examined conditions, the new ULC-based controllers tend to further enhance the hybrid microgrid system’s frequency time response.
- Cardiff University United Kingdom
- Cardiff University United Kingdom
- King Saud University Saudi Arabia
- Languages and Cultures of Sub-Saharan Africa France
- Ain Shams University
ultra-local control; fuzzy control; PID; load frequency control; marine predator algorithm; renewable energy
ultra-local control; fuzzy control; PID; load frequency control; marine predator algorithm; renewable energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
