
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design Optimization of Counter-Flow Double-Pipe Heat Exchanger Using Hybrid Optimization Algorithm

doi: 10.3390/pr11061674
Double-pipe counter-flow heat exchangers are considered more suitable for heat recovery in the heat transfer industry. Numerous studies have been conducted to develop static tools for optimizing operating parameters of heat exchangers. Using this study, an improved heat exchanger system will be developed. This is frequently used to solve optimization problems and find optimal solutions. The Taguchi method determines the critical factor affecting a specific performance parameter of the heat exchanger by identifying the significant level of the factor affecting that parameter. Gray relational analysis was adopted to determine the gray relational grade to represent the multi-factor optimization model, and the heat exchanger gray relation coefficient target values that were predicted have been achieved using ANN with a back propagation model with the Levenberg–Marquardt drive algorithm. The genetic algorithm improved the accuracy of the gray relational grade by assigning gray relational coefficient values as input to the developed effective parameter. This study also demonstrated significant differences between experimental and estimated values. According to the results, selecting the parameters yielded optimal heat exchanger performance. Using a genetic algorithm to solve a double-pipe heat exchanger with counterflow can produce the most efficient heat exchanger.
- King Khalid University Saudi Arabia
- Princess Nourah bint Abdulrahman University Saudi Arabia
- King Khalid University Saudi Arabia
- Princess Nourah bint Abdulrahman University Saudi Arabia
double-pipe heat exchanger; genetic algorithm; gray
double-pipe heat exchanger; genetic algorithm; gray
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
