
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing Pressure Prediction Models for Pneumatic Conveying of Biomass: A Comprehensive Approach to Minimize Trial Tests and Enhance Accuracy

doi: 10.3390/pr11061698
handle: 1959.13/1498398
This study investigates pneumatic conveying of four different biomass materials, namely cottonseeds, wood pellets, wood chips, and wheat straw. The performance of a previously proposed model for predicting pressure drop is evaluated using biomass materials. Results indicate that the model can predict pressure with an error range of 30 percent. To minimize the number of trial tests required, an optimization algorithm is proposed. The findings show that with a combination of three trial tests, there is a 60 percent probability of selecting the right subset for accurately predicting pressure drop for the entire range of tests. Further investigation of different training subsets suggests that increasing the number of tests from 3 to 7 can improve the probability from 60% to 90%. Moreover, thorough analysis of all three-element subsets in the entire series of tests reveals that when considering air mass flow rate as the input, having air mass flow rates that are not only closer in value but also lower increases the likelihood of selecting the correct subset for predicting pressure drop across the entire range. This advancement can help industries to design and optimize pneumatic conveying systems more effectively, leading to significant energy savings and improved operational performance.
- University of Newcastle Australia Australia
- University of Newcastle Australia Australia
- University of Pittsburgh United States
dense phase, biomass, plug flow, 621, pneumatic conveying, biomass; dense phase; plug flow; pneumatic conveying
dense phase, biomass, plug flow, 621, pneumatic conveying, biomass; dense phase; plug flow; pneumatic conveying
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
