Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying the Contributions of Vegetation Dynamics and Climate Factors to the Enhancement of Vegetation Productivity in Northern China (2001–2020)

Authors: Kaixuan Liu; Xufeng Wang; Haibo Wang;

Quantifying the Contributions of Vegetation Dynamics and Climate Factors to the Enhancement of Vegetation Productivity in Northern China (2001–2020)

Abstract

Vegetation dynamics are critical to the terrestrial carbon and water cycle, with China recognized as one of the largest contributors to global greening due to significant variations in forest coverage. However, distinguishing the effects of vegetation changes from those of climate factors on vegetation productivity remains challenging. This study conducted a comprehensive analysis of vegetation productivity in Northwest China over the past two decades, focusing on the spatiotemporal patterns and drivers of gross primary production (GPP) within ecological restoration areas. Using trend analysis and ridge regression models, we assessed the relative contributions of climate factors and vegetation coverage changes to GPP dynamics. The results revealed a significant increase in both the GPP and vegetation coverage in Northern China from 2001 to 2020, with GPP rising by 6.7 g C m−2 yr−1 and forest coverage increasing by 0.08% per year. A strong positive correlation (r = 0.9) was observed between vegetation coverage changes and GPP. The increase in GPP was driven by both climate factors and changes in forest coverage, with climate factors contributing 61.0% and vegetation coverage changes contributing 39.0%. Among the climate factors, radiation, temperature, and precipitation contributed 15.4%, 6.4%, and 39.2%, respectively. The study highlights the critical role of ecological restoration efforts, particular in regions like the Less Plateau and Inner Mongolian Plateau, in enhancing vegetation productivity. These findings provide valuable insights for addressing desertification and inform strategies for ecological restoration and sustainable development in Northern China.

Related Organizations
Keywords

climate change, vegetation dynamics, Science, Q, relative contributions, Northern China, vegetation productivity, driving factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research