
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Data-Driven Diagnostic Framework for Wind Turbine Structures: A Holistic Approach

The complex dynamics of operational wind turbine (WT) structures challenges the applicability of existing structural health monitoring (SHM) strategies for condition assessment. At the center of Europe’s renewable energy strategic planning, WT systems call for implementation of strategies that may describe the WT behavior in its complete operational spectrum. The framework proposed in this paper relies on the symbiotic treatment of acting environmental/operational variables and the monitored vibration response of the structure. The approach aims at accurate simulation of the temporal variability characterizing the WT dynamics, and subsequently at the tracking of the evolution of this variability in a longer-term horizon. The bi-component analysis tool is applied on long-term data, collected as part of continuous monitoring campaigns on two actual operating WT structures located in different sites in Germany. The obtained data-driven structural models verify the potential of the proposed strategy for development of an automated SHM diagnostic tool.
operational spectrum, Chemical technology, time varying autoregressive moving average (TV-ARMA) models, Operational spectrum, Data-driven framework, uncertainty propagation, TP1-1185, data-driven framework, wind turbines, polynomial chaos expansion (PCE), Uncertainty propagation, Wind turbines, Data-driven framework; Operational spectrum; Polynomial chaos expansion (PCE); Time varying autoregressive moving average (TV-ARMA) models; Uncertainty propagation; Wind turbines, Polynomial chaos expansion (PCE), Time varying autoregressive moving average (TV-ARMA) models
operational spectrum, Chemical technology, time varying autoregressive moving average (TV-ARMA) models, Operational spectrum, Data-driven framework, uncertainty propagation, TP1-1185, data-driven framework, wind turbines, polynomial chaos expansion (PCE), Uncertainty propagation, Wind turbines, Data-driven framework; Operational spectrum; Polynomial chaos expansion (PCE); Time varying autoregressive moving average (TV-ARMA) models; Uncertainty propagation; Wind turbines, Polynomial chaos expansion (PCE), Time varying autoregressive moving average (TV-ARMA) models
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
