
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Geographic and Opportunistic Recovery with Depth and Power Transmission Adjustment for Energy-Efficiency and Void Hole Alleviation in UWSNs

Underwater Wireless Sensor Networks (UWSNs) are promising and emerging frameworks having a wide range of applications. The underwater sensor deployment is beneficial; however, some factors limit the performance of the network, i.e., less reliability, high end-to-end delay and maximum energy dissipation. The provisioning of the aforementioned factors has become a challenging task for the research community. In UWSNs, battery consumption is inevitable and has a direct impact on the performance of the network. Most of the time energy dissipates due to the creation of void holes and imbalanced network deployment. In this work, two routing protocols are proposed to avoid the void hole and extra energy dissipation problems which, due to which lifespan of the network increases. To show the efficacy of the proposed routing schemes, they are compared with the state of the art protocols. Simulation results show that the proposed schemes outperform the counterparts.
- Lancaster University United Kingdom
- COMSATS University Islamabad Pakistan
- Department of Computer Sciences
- COMSATS University Islamabad Pakistan
- Kwangwoon University Korea (Republic of)
void holes, Chemical technology, Underwater Wireless Sensor Networks (UWSNs), TP1-1185, GEDPAR, depth adjustment, transmission range, energy efficiency
void holes, Chemical technology, Underwater Wireless Sensor Networks (UWSNs), TP1-1185, GEDPAR, depth adjustment, transmission range, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
