
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy Harvested and Cooperative Enabled Efficient Routing Protocol (EHCRP) for IoT-WBAN

The health industry is one of the most auspicious domains for the application of Internet of Things (IoT) based technologies. Lots of studies have been carried out in the health industry field to minimize the use of resources and increase the efficiency. The use of IoT combined with other technologies has brought quality advancement in the health sector at minimum expense. One such technology is the use of wireless body area networks (WBANs), which will help patients incredibly in the future and will make them more productive because there will be no need for staying at home or a hospital for a long time. WBANs and IoT have an integrated future as WBANs, like any IoT application, are a collection of heterogeneous sensor-based devices. For the better amalgamation of the IoT and WBANs, several hindrances blocking their integration need to be addressed. One such problem is the efficient routing of data in limited resource sensor nodes (SNs) in WBANs. To solve this and other problems, such as transmission of duplicate sensed data, limited network lifetime, etc., energy harvested and cooperative-enabled efficient routing protocol (EHCRP) for IoT-WBANs is proposed. The proposed protocol considers multiple parameters of WBANs for efficient routing such as residual energy of SNs, number of hops towards the sink, node congestion levels, signal-to-noise ratio (SNR) and available network bandwidth. A path cost estimation function is calculated to select forwarder node using these parameters. Due to the efficient use of the path-cost estimation process, the proposed mechanism achieves efficient and effective multi-hop routing of data and improves the reliability and efficiency of data transmission over the network. After extensive simulations, the achieved results of the proposed protocol are compared with state-of-the-art techniques, i.e., E-HARP, EB-MADM, PCRP and EERP. The results show significant improvement in network lifetime, network throughout, and end-to-end delay.
- Center for Excellence in Education United States
- Center for Excellence in Education United States
- King Saud University Saudi Arabia
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Pakistan
- Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Pakistan
energy harvesting, IoT, Chemical technology, cooperative effort, TP1-1185, routing protocol, efficient data transmission, Article, WBAN
energy harvesting, IoT, Chemical technology, cooperative effort, TP1-1185, routing protocol, efficient data transmission, Article, WBAN
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
