
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics

The state of health (SOH) prediction of lithium-ion batteries (LIBs) is of crucial importance for the normal operation of the battery system. In this paper, a new method for cycle life and full life cycle capacity prediction is proposed, which combines the early discharge characteristics with the neural Gaussian process (NGP) model. The cycle data sets of commercial LiFePO4(LFP)/graphite cells generated under different operating conditions are analyzed, and the power characteristic P is extracted from the voltage and current curves of the early cycles. A Pearson correlation analysis shows that there is a strong correlation between P and cycle life. Our model achieves 8.8% test error for predicting cycle life using degradation data for the 20th to 110th cycles. Based on the predicted cycle life, capacity degradation curves for the whole life cycle of the cells are predicted. In addition, the NGP method, combined with power characteristics, is compared with other classical methods for predicting the remaining useful life (RUL) of LIBs. The results demonstrate that the proposed prediction method of cycle life and capacity has better battery life and capacity prediction. This work highlights the use of early discharge characteristics to predict battery performance, and shows the application prospect in accelerating the development of electrode materials and optimizing battery management systems (BMS).
- State Key Laboratory of Mechanical Transmission China (People's Republic of)
- PetroChina China (People's Republic of)
- State Key Laboratory of Mechanical Transmission China (People's Republic of)
- Chongqing University China (People's Republic of)
- Chongqing University China (People's Republic of)
early discharge characteristics, batteries, neural Gaussian process, Chemical technology, Communication, life prediction, TP1-1185
early discharge characteristics, batteries, neural Gaussian process, Chemical technology, Communication, life prediction, TP1-1185
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
