
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Secrecy Performance Maximization for Underlay CR Networks with an Energy Harvesting Jammer

This paper investigates the secrecy communication in an underlay cognitive radio (CR) networks with one primary user (PU) as well as multiple PUs, where the radio frequency (RF) energy-harvesting secondary user (SU) transmits the confidential information to the destination in the presence of a potential eavesdropper. We introduce a RF energy-harvesting secondary jammer (SJ) to secure the SU transmissions. The system works in time slots, where each time slot is divided into the energy transfer (ET) phase and the information transfer (IT) phase. In ET phase, the SU and SJ capture energy from the PU transmissions; in the IT phase, the SU uses the harvested energy to transmit information to the destination without causing the harmful interference to the PU transmissions, while the SJ utilizes the captured energy to generate jamming signals to the eavesdropper to secure the SU transmissions. We aim to maximize the secrecy rate for SU transmissionsby jointly optimizing the time allocation between ET phase and IT phase and the transmit power allocation at the SU and SJ. We first formulate the secrecy rate maximization as non-convex optimization problems. Then, we propose efficient nested form algorithms for the non-convex problems. In the outer layer, we obtain the optimal time allocation by the one dimension search method. In the inner layer, we obtain the optimal transmit power allocation by the DC programming, where the Lagrange duality method is employed to solve the convex approximation problem. Simulation results verify that the proposed schemes essentially improve the secrecy rate of the secondary network as compared to the benchmark schemes.
- Zhejiang University of Science and Technology China (People's Republic of)
- Zhejiang University of Technology China (People's Republic of)
CR networks, DC programming, Chemical technology, physical layer security, RF energy-harvesting, TP1-1185, Article, Computer Communication Networks, Energy Transfer, physical layer security; CR networks; RF energy-harvesting; DC programming; Lagrange duality method, Computer Simulation, Algorithms, Confidentiality, Lagrange duality method
CR networks, DC programming, Chemical technology, physical layer security, RF energy-harvesting, TP1-1185, Article, Computer Communication Networks, Energy Transfer, physical layer security; CR networks; RF energy-harvesting; DC programming; Lagrange duality method, Computer Simulation, Algorithms, Confidentiality, Lagrange duality method
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
