
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
FDNet: Knowledge and Data Fusion-Driven Deep Neural Network for Coal Burst Prediction

Coal burst prediction is an important research hotspot in coal mine production safety. This paper presents FDNet, which is a knowledge and data fusion-driven deep neural network for coal burst prediction. The main idea of FDNet is to extract explicit features based on the existing mine seismic physical model and utilize deep learning to automatically extract the implicit features of mine microseismic data. The key innovations of FDNet include an expert knowledge indicator selection method based on a subset search strategy, a mine microseismic data extraction method based on a deep convolutional neural network, and a feature deep fusion method of mine microseismic data based on an attention mechanism. We conducted a set of engineering experiments in Gaojiapu Coal Mine to evaluate the performance of FDNet. The results show that compared with the state-of-the-art data-driven machines and knowledge-driven methods, the prediction accuracy of FDNet is improved by 5% and 16%, respectively.
- China University of Mining and Technology China (People's Republic of)
- China University of Mining and Technology China (People's Republic of)
fusion-driven, Chemical technology, deep neural network, TP1-1185, coal burst; coal mine safety; fusion-driven; deep neural network, Article, coal mine safety, Coal, coal burst, Neural Networks, Computer
fusion-driven, Chemical technology, deep neural network, TP1-1185, coal burst; coal mine safety; fusion-driven; deep neural network, Article, coal mine safety, Coal, coal burst, Neural Networks, Computer
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
