Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating Biomass and Carbon Sequestration Capacity of Phragmites australis Using Remote Sensing and Growth Dynamics Modeling: A Case Study in Beijing Hanshiqiao Wetland Nature Reserve, China

Authors: Siyuan Wang; Sida Li; Shaoyan Zheng; Weilun Gao; Yong Zhang; Bo Cao; Baoshan Cui; +1 Authors

Estimating Biomass and Carbon Sequestration Capacity of Phragmites australis Using Remote Sensing and Growth Dynamics Modeling: A Case Study in Beijing Hanshiqiao Wetland Nature Reserve, China

Abstract

Estimating the biomass of Phragmites australis (Cav.) Trin. ex Steud., i.e., a common wetland macrophyte, and the associated carbon sequestration capacity has attracted increasing attention. Hanshiqiao Wetland Nature Reserve (HWNR) is a large P. australis wetland in Beijing, China, and provides an ideal case study site for such purpose in an urban setting. In this study, an existing P. australis growth dynamics model was adapted to estimate the plant biomass, which was in turn converted to the associated carbon sequestration capacity in the HWNR throughout a typical year. To account for local differences, the modeling parameters were calibrated against the above-ground biomass (AGB) of P. australis retrieved from hyperspectral images of the study site. We also analyzed the sensitivity of the modeling parameters and the influence of environmental factors, particularly the nutrient availability, on the growth dynamics and carbon sequestration capacity of P. australis. Our results show that the maximum AGB and below-ground biomass (BGB) of P. australis in the HWNR are 2.93 × 103 and 2.49 × 103 g m−2, respectively, which are higher than the reported level from nearby sites with similar latitudes, presumably due to the relatively high nutrient availability and more suitable inundation conditions in the HWNR. The annual carbon sequestration capacity of P. australis in the HWNR was estimated to be 2040.73 gC m−2 yr−1, which was also found to be highly dependent on nutrient availability, with a 50% increase (decrease) in the constant of the nutrient availability KNP, resulting in a 12% increase (23% decrease) in the annual carbon sequestration capacity. This implies that a comprehensive management of urban wetlands that often encounter eutrophication problems to synergize the effects of nutrient control and carbon sequestration is worth considering in future practices.

Related Organizations
Keywords

Carbon Sequestration, China, TP1-1185, Poaceae, Article, remote sensing, <i>Phragmites australis</i>; urban wetlands; growth dynamics model; remote sensing; biomass; carbon sequestration, Biomass, growth dynamics model, biomass, <i>Phragmites australis</i>, Chemical technology, carbon sequestration, Beijing, Wetlands, Remote Sensing Technology, urban wetlands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold