
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm

To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.
- Guizhou University China (People's Republic of)
- Guizhou University China (People's Republic of)
chaotic tent map, Lévy flight, Chemical technology, Data Collection, coverage optimization, wireless sensor networks; COOT bird optimization algorithm; chaotic tent map; Lévy flight; opposition-based learning; coverage optimization, TP1-1185, Article, COOT bird optimization algorithm, Computer Simulation, opposition-based learning, wireless sensor networks, Wireless Technology, Algorithms
chaotic tent map, Lévy flight, Chemical technology, Data Collection, coverage optimization, wireless sensor networks; COOT bird optimization algorithm; chaotic tent map; Lévy flight; opposition-based learning; coverage optimization, TP1-1185, Article, COOT bird optimization algorithm, Computer Simulation, opposition-based learning, wireless sensor networks, Wireless Technology, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
