
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Research and Development of Ankle–Foot Orthoses: A Review

The ankle joint is one of the important joints of the human body to maintain the ability to walk. Diseases such as stroke and ankle osteoarthritis could weaken the body’s ability to control joints, causing people’s gait to be out of balance. Ankle–foot orthoses can assist users with neuro/muscular or ankle injuries to restore their natural gait. Currently, passive ankle–foot orthoses are mostly designed to fix the ankle joint and provide support for walking. With the development of materials, sensing, and control science, semi-active orthoses that release mechanical energy to assist walking when needed and can store the energy generated by body movement in elastic units, as well as active ankle–foot orthoses that use external energy to transmit enhanced torque to the ankle, have received increasing attention. This article reviews the development process of ankle–foot orthoses and proposes that the integration of new ankle–foot orthoses with rehabilitation technologies such as monitoring or myoelectric stimulation will play an important role in reducing the walking energy consumption of patients in the study of human-in-the-loop models and promoting neuro/muscular rehabilitation.
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- Sir Run Run Shaw Hospital China (People's Republic of)
- Sir Run Run Shaw Hospital China (People's Republic of)
- Zhejiang University China (People's Republic of)
Chemical technology, Research, Foot Orthoses, TP1-1185, Walking, functional electrical stimulation, human in the loop, Biomechanical Phenomena, ankle–foot orthoses, energy consumption, Humans, Systematic Review, Ankle, Gait, Ankle Joint
Chemical technology, Research, Foot Orthoses, TP1-1185, Walking, functional electrical stimulation, human in the loop, Biomechanical Phenomena, ankle–foot orthoses, energy consumption, Humans, Systematic Review, Ankle, Gait, Ankle Joint
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
