
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Generalizability of Soft Sensors for Bioprocesses through Similarity Analysis and Phase-Dependent Recalibration

A soft sensor concept is typically developed and calibrated for individual bioprocesses in a time-consuming manual procedure. Following that, the prediction performance of these soft sensors degrades over time, due to changes in raw materials, biological variability, and modified process strategies. Through automatic adaptation and recalibration, adaptive soft sensor concepts have the potential to generalize soft sensor principles and make them applicable across bioprocesses. In this study, a new generalized adaptation algorithm for soft sensors is developed to provide phase-dependent recalibration of soft sensors based on multiway principal component analysis, a similarity analysis, and robust, generalist phase detection in multiphase bioprocesses. This generalist soft sensor concept was evaluated in two multiphase bioprocesses with various target values, media, and microorganisms. Consequently, the soft sensor concept was tested for biomass prediction in a Pichia pastoris process, and biomass and protein prediction in a Bacillus subtilis process, where the process characteristics (cultivation media and cultivation strategy) were varied. High prediction performance was demonstrated for P. pastoris processes (relative error = 6.9%) as well as B. subtilis processes in two different media during batch and fed-batch phases (relative errors in optimized high-performance medium: biomass prediction = 12.2%, protein prediction = 7.2%; relative errors in standard medium: biomass prediction = 12.8%, protein prediction = 8.8%).
- Technical University of Munich Germany
adaptive modeling, Principal Component Analysis, Article ; adaptive modeling ; automatic recalibration ; bioprocess ; generalization ; soft sensor, Chemical technology, Acclimatization, bioprocess, TP1-1185, Article, soft sensor, Biomass, automatic recalibration, generalization, Algorithms, Bacillus subtilis, ddc: ddc:
adaptive modeling, Principal Component Analysis, Article ; adaptive modeling ; automatic recalibration ; bioprocess ; generalization ; soft sensor, Chemical technology, Acclimatization, bioprocess, TP1-1185, Article, soft sensor, Biomass, automatic recalibration, generalization, Algorithms, Bacillus subtilis, ddc: ddc:
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
