
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Flexible Electromagnetic Sensor with Inkjet-Printed Silver Nanoparticles on PET Substrate for Chemical and Biomedical Applications

For this article, a low-cost, compact, and flexible inkjet-printed electromagnetic sensor was investigated for its chemical and biomedical applications. The investigated sensor design was used to estimate variations in the concentration of chemicals (ethanol and methanol) and biochemicals (hydrocortisone—a chemical derivative of cortisol, a biomarker of stress and cardiovascular effects). The proposed design’s sensitivity was further improved by carefully choosing the frequency range (0.5–4 GHz), so that the analyzed samples showed approximately linear variations in their dielectric properties. The dielectric properties were measured using a vector network analyzer (VNA) and an Agilent 85070E Dielectric Probe Kit. The sensor design had a resonant frequency at 2.2 GHz when investigated without samples, and a consistent shift in resonant frequency was observed, with variation in the concentrations of the investigated chemicals. The sensitivity of the designed sensor is decent and is comparable to its non-flexible counterparts. Furthermore, the simulation and measured results were in agreement and were comparable to similar investigated sensor prototypes based on non-flexible Rogers substrates (Rogers RO4003C) and Rogers Droid/RT 5880), demonstrating true potential for chemical, biomedical applications, and healthcare.
- Queen Mary University of London United Kingdom
Silver, Ethanol, Hydrocortisone, Polyethylene Terephthalates, Chemical technology, Methanol, Metal Nanoparticles, TP1-1185, Biosensing Techniques, Article, metamaterials, Printing, hydrocortisone, flexible, PET substrate, Electromagnetic Phenomena
Silver, Ethanol, Hydrocortisone, Polyethylene Terephthalates, Chemical technology, Methanol, Metal Nanoparticles, TP1-1185, Biosensing Techniques, Article, metamaterials, Printing, hydrocortisone, flexible, PET substrate, Electromagnetic Phenomena
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
