
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
FPGA-Based Sensors for Distributed Digital Manufacturing Systems: A State-of-the-Art Review

The combination of distributed digital factories (D2Fs) with sustainable practices has been proposed as a revolutionary technique in modern manufacturing. This review paper explores the convergence of D2F with innovative sensor technology, concentrating on the role of Field Programmable Gate Arrays (FPGAs) in promoting this paradigm. A D2F is defined as an integrated framework where digital twins (DTs), sensors, laser additive manufacturing (laser-AM), and subtractive manufacturing (SM) work in synchronization. Here, DTs serve as a virtual replica of physical machines, allowing accurate monitoring and control of a given manufacturing process. These DTs are supplemented by sensors, providing near-real-time data to assure the effectiveness of the manufacturing processes. FPGAs, identified for their re-programmability, reduced power usage, and enhanced processing compared to traditional processors, are increasingly being used to develop near-real-time monitoring systems within manufacturing networks. This review paper identifies the recent expansions in FPGA-based sensors and their exploration within the D2Fs operations. The primary topics incorporate the deployment of eco-efficient data management and near-real-time monitoring, targeted at lowering waste and optimizing resources. The review paper also identifies the future research directions in this field. By incorporating advanced sensors, DTs, laser-AM, and SM processes, this review emphasizes a path toward more sustainable and resilient D2Fs operations.
- Missouri University of Science and Technology United States
- Missouri University of Science and Technology United States
Chemical technology, TP1-1185, Review, FPGA sensor, sustainability, distributed digital factories, traditional manufacturing, traditional sensors, additive manufacturing
Chemical technology, TP1-1185, Review, FPGA sensor, sustainability, distributed digital factories, traditional manufacturing, traditional sensors, additive manufacturing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
