
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent Energy Efficiency Maximization for Wirelessly-Powered UAV-Assisted Secure Sensor Network

The rapid proliferation of Internet of Things (IoT) devices and applications has led to an increasing demand for energy-efficient and secure communication in wireless sensor networks. In this article, we firstly propose an intelligent approach to maximize the energy efficiency of the UAV in a secure sensor network with wireless power transfer (WPT). All sensors harvest energy via downlink signal and use it to transmit uplink information to the UAV. To ensure secure data transmission, the UAV needs to optimize the transmission parameters to decode received information under malicious interference from an attacker. Code Division Multiple Access (CDMA) is adopted to improve uplink communication robustness. To maximize the UAV’s energy efficiency in data collection tasks, we formulate a constrained optimization problem that jointly optimizes charging power, charging duration, and data transmission duration. Applying Deep Deterministic Policy Gradient (DDPG) algorithm, we train an action policy to dynamically determine near-optimal transmission parameters in real time. Numerical results validate the superiority of proposed intelligent approach over exhaustive search and gradient ascent techniques. This work provides some important guidelines for the design of green secure wireless-powered sensor networks.
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
wireless powered network, uplink, UAV, Chemical technology, TP1-1185, energy efficiency, downlink, Article
wireless powered network, uplink, UAV, Chemical technology, TP1-1185, energy efficiency, downlink, Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
