
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent Operation and Maintenance of Wind Turbines Gearboxes via Digital Twin and Multi-Source Data Fusion

Wind turbine operation and maintenance (O&M) faces significant challenges due to the complexity of equipment, harsh operating environments, and the difficulty of real-time fault prediction. Traditional methods often fail to provide timely and accurate warnings, leading to increased downtime and maintenance costs. To address these issues, this study systematically explores an intelligent operation and maintenance method for wind turbines, utilizing digital twin technology and multi-source data fusion. Specifically, it proposes a remote intelligent operation and maintenance (O&M) framework for wind turbines based on digital twin technology. Furthermore, an algorithm model for multi-source operational data analysis of wind turbines is designed, leveraging a Whale Optimization Algorithm-optimized Temporal Convolutional Network with an Attention mechanism (WOA-TCN-Attention). The WOA is used to optimize the hyperparameters of the TCN-Attention model. Then, the gearbox fault alarm threshold and warning threshold are set using the statistical characteristics of the residual values, and the absolute value of the residuals is used to determine the abnormal operating state of the gearbox. Finally, the proposed method was validated using operational data from a wind farm in Xinjiang. With input data from multiple sources, including seven key parameters such as temperature, pressure, and power, the method was evaluated based on EMAE, ERMSE, and EMAPE. The results demonstrated that the proposed method achieved the smallest prediction error and provided effective early warnings 18 h and 33 min prior to actual failures, enabling real-time and efficient operation and maintenance management for wind turbines.
- Xinjiang University China (People's Republic of)
- Minjiang University China (People's Republic of)
wind turbine, Chemical technology, time convolutional network, TP1-1185, whale optimization algorithm, intelligent O&M, fault early warning, Article
wind turbine, Chemical technology, time convolutional network, TP1-1185, whale optimization algorithm, intelligent O&M, fault early warning, Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
