
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Integrated Energy Management in Small-Scale Smart Grids Considering the Emergency Load Conditions: A Combined Battery Energy Storage, Solar PV, and Power-to-Hydrogen System

handle: 11386/4893097
This study introduces an advanced Mixed-Integer Linear Programming model tailored for comprehensive electrical and thermal energy management in small-scale smart grids, addressing emergency load shedding and overload situations. The model integrates combined heat and power sources, capable of simultaneous electricity and heat generation, alongside a mobile photovoltaic battery storage system, a wind resource, a thermal storage tank, and demand response programs (DRPs) for both electrical and thermal demands. Power-to-hydrogen systems are also incorporated to efficiently convert electrical energy into heat, enhancing network synergies. Utilizing the robust Gurobi solver, the model aims to minimize operating, fuel, and maintenance costs while mitigating environmental impact. Simulation results under various scenarios demonstrate the model’s superior performance. Compared to conventional evolutionary methods like particle swarm optimization, non-dominated sorting genetic algorithm III, and biogeography-based optimization, the proposed model exhibits remarkable improvements, outperforming them by 11.4%, 5.6%, and 11.6%, respectively. This study emphasizes the advantages of employing DRP and heat tank equations to balance electrical and thermal energy relationships, reduce heat losses, and enable the integration of larger photovoltaic systems to meet thermal constraints, thus broadening the problem’s feasible solution space.
- Shiraz University of Technology Iran (Islamic Republic of)
- San Sebastián University Chile
- Università degli studi di Salerno Italy
- University of Johannesburg South Africa
- University of Johannesburg South Africa
renewable energy resources, energy management, Engineering (General). Civil engineering (General), demand response, battery; combined heat and power; demand response; energy management; renewable energy resources, battery, combined heat and power, TA1-2040
renewable energy resources, energy management, Engineering (General). Civil engineering (General), demand response, battery; combined heat and power; demand response; energy management; renewable energy resources, battery, combined heat and power, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
