Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Smart Citiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Smart Cities
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Smart Cities
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Methodology for Estimating the Potential for Photovoltaic Electricity Generation on Urban Building Rooftops for Self-Consumption Applications

Authors: Edisson Villa-Ávila; Paul Arévalo; Danny Ochoa-Correa; Michael Villa-Ávila; Emilia Sempértegui-Moscoso; Francisco Jurado;

A New Methodology for Estimating the Potential for Photovoltaic Electricity Generation on Urban Building Rooftops for Self-Consumption Applications

Abstract

As the world increasingly embraces renewable energy as a sustainable power source, accurately assessing of solar energy potential becomes paramount. Photovoltaic (PV) systems, especially those integrated into urban rooftops, offer a promising solution to address the challenges posed by aging energy grids and rising fossil fuel prices. However, optimizing the placement of PV panels on rooftops remains a complex task due to factors like building shape, location, and the surrounding environment. This study introduces the Roof-Solar-Max methodology, which aims to maximize the placement of PV panels on urban rooftops while avoiding shading and panel overlap. Leveraging geographic information systems technology and 3D models, this methodology provides precise estimates of PV generation potential. Key contributions of this research include a roof categorization model, identification of PV-ready rooftops, optimal spatial distribution of PV panels, and innovative evaluation technology. Practical implementation in a real urban setting demonstrates the methodology’s utility for decision making in the planning and development of solar energy systems in urban areas. The main findings highlight substantial potential for PV energy generation in the studied urban area, with capacities reaching up to 444.44 kW. Furthermore, implementing PV systems on residential rooftops has proven to be an effective strategy for reducing CO2 emissions and addressing climate change, contributing to a cleaner and more sustainable energy mix in urban environments.

Keywords

urban solar energy planning, Roof-Solar-Max methodology, solar energy potential assessment, TA1-2040, photovoltaic rooftop systems, Engineering (General). Civil engineering (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold